Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668612

RESUMO

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Assuntos
Bothrops , Venenos de Crotalídeos , Gânglios Espinais , Hiperalgesia , Receptores da Neurocinina-1 , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Venenos de Crotalídeos/toxicidade , Masculino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Receptores da Neurocinina-1/metabolismo , Minociclina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos Sprague-Dawley
2.
Microorganisms, v. 16, n. 4, 187, abr. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5313

RESUMO

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.

3.
Ann Transl Med ; 11(10): 347, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37675307

RESUMO

Background: Conventional thoracotomy (CT) often leads to systemic inflammatory response syndrome (SIRS), which induces several clinical complications. CT remains widely used in low-income institutions. Although minimally invasive surgical procedures, such as robotic surgery (RS), have been used to prevent many of the complications inherit from the surgical procedure. Here, we investigated the protective effect of vagus nerve stimulation (VNS) in a pre-clinical model during CT or RS and postoperative period (POP) relative to clinical complications and inflammatory control. The objective was to compare hemodynamic features and cytokine levels in the blood, lung, and bronchoalveolar lavage (BAL) fluids of animals subjected to CT or RS with or without VNS. Methods: Twenty-four minipigs were subjected to 12 animals CT and 12 animals RS, with or without VNS, and accompanied 24 h later by pulmonary lobectomy. Blood samples for evaluating the hemodynamic parameters were collected before the surgical preparation, immediately after the beginning of VNS, and every 4 h until 24 h after the lobectomy. BAL fluid and lung tissue were collected at the end of the experiment. Cytokine levels were evaluated in the blood, BAL fluid, and lung tissues. Results: VNS maintained a more stable heart rate during POP and decreased the incidence of overall cardiac complications while preventing increase in IL-6 levels 12 h after lobectomy, compared to sham animals. No differences were found in cytokine expression in the BAL fluid and lung tissue in any of the studied groups. Conclusions: Taken together, our data suggested that VNS should be considered a non-pharmacological tool in the prevention of the exacerbated inflammatory response responsible for severe clinical complications, especially in more aggressive surgical procedures.

4.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445871

RESUMO

Understanding the mechanisms responsible for anxiety disorders is a major challenge. Avoidance behavior is an essential feature of anxiety disorders. The two-way avoidance test is a preclinical model with two distinct subpopulations-the good and poor performers-based on the number of avoidance responses presented during testing. It is believed that the habenula subnuclei could be important for the elaboration of avoidance response with a distinct pattern of activation and neuroinflammation. The present study aimed to shed light on the habenula subnuclei signature in avoidance behavior, evaluating the pattern of neuronal activation using FOS expression and astrocyte density using GFAP immunoreactivity, and comparing control, good and poor performers. Our results showed that good performers had a decrease in FOS immunoreactivity (IR) in the superior part of the medial division of habenula (MHbS) and an increase in the marginal part of the lateral subdivision of lateral habenula (LHbLMg). Poor performers showed an increase in FOS in the basal part of the lateral subdivision of lateral habenula (LHbLB). Considering the astroglial immunoreactivity, the poor performers showed an increase in GFAP-IR in the inferior portion of the medial complex (MHbl), while the good performers showed a decrease in the oval part of the lateral part of the lateral complex (LHbLO) in comparison with the other groups. Taken together, our data suggest that specific subdivisions of the MHb and LHb have different activation patterns and astroglial immunoreactivity in good and poor performers. This study could contribute to understanding the neurobiological mechanisms responsible for anxiety disorders.


Assuntos
Habenula , Humanos , Habenula/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo
5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292973

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Animais , Ratos , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Oxidopamina , Inflamassomos/metabolismo , Eletrodos , Glutamatos , Inflamação/terapia , Citocinas/metabolismo , Sistemas de Transporte de Aminoácidos , Ácido gama-Aminobutírico
6.
PLoS One ; 17(7): e0271295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819957

RESUMO

Pain and depression are complex disorders that frequently co-occur, resulting in diminished quality of life. The habenula is an epithalamic structure considered to play a pivotal role in the neurocircuitry of both pain and depression. The habenula can be divided into two major areas, the lateral and medial habenula, that can be further subdivided, resulting in 6 main subregions. Here, we investigated habenula activation patterns in a rat model of neuropathic pain with accompanying depressive-like behaviour. Wistar rats received active surgery for the development of neuropathic pain (chronic constriction injury of the sciatic nerve; CCI), sham surgery (surgical control), or no surgery (behavioural control). All animals were evaluated for mechanical nociceptive threshold using the paw pressure test and depressive-like behaviour using the forced swimming test, followed by evaluation of the immunoreactivity to cFos-a marker of neuronal activity-in the habenula and subregions. The Open Field Test was used to evaluate locomotor activity. Animals with peripheral neuropathy (CCI) showed decreased mechanical nociceptive threshold and increased depressive-like behaviour compared to control groups. The CCI group presented decreased cFos immunoreactivity in the total habenula, total lateral habenula and lateral habenula subregions, compared to controls. No difference was found in cFos immunoreactivity in the total medial habenula, however when evaluating the subregions of the medial habenula, we observed distinct activation patterns, with increase cFos immunoreactivity in the superior subregion and decrease in the central subregion. Taken together, our data suggest an involvement of the habenula in neuropathic pain and accompanying depressive-like behaviour.


Assuntos
Habenula , Neuralgia , Animais , Neuralgia/complicações , Qualidade de Vida , Ratos , Ratos Wistar , Nervo Isquiático/lesões
7.
Int J Mol Sci, v. 23, 20, 12116, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4669

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the goldstandard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.

8.
Front Neurol ; 11: 573718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324324

RESUMO

Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.

9.
Front Psychol ; 11: 1825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849076

RESUMO

Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.

10.
Exp Neurol ; 332: 113390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598929

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.


Assuntos
Meio Ambiente , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Animais , Sobrevivência Celular , Constrição Patológica , Endorfinas/sangue , Encefalinas/sangue , Hiperalgesia/patologia , Masculino , Fibras Nervosas/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Nervo Isquiático/patologia , Medula Espinal/metabolismo , Suporte de Carga
11.
Cell Mol Neurobiol ; 40(6): 939-954, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31939008

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.


Assuntos
Astrócitos/patologia , Estimulação Encefálica Profunda , Doença de Parkinson/patologia , Núcleo Subtalâmico/patologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Globo Pálido/patologia , Hiperplasia , Inflamação/patologia , Masculino , Camundongos , Atividade Motora , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
12.
Exp Neurol, v. 332, 113390, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3080

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14?days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.

13.
Exp. Neurol. ; : 113390, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17758

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14?days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.

14.
Exp Neurol ; 318: 12-21, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028827

RESUMO

Pain is a common nonmotor symptom of Parkinson's disease (PD) that remains neglected and misunderstood. Elucidating the nondopaminergic circuitry may be key to better understanding PD and improving current treatments. We investigated the role of monoamines in nociceptive behavior and descending analgesic circuitry in a rat 6-hydroxydopamine (6-OHDA)-induced PD model and explored the resulting motor dysfunctions and inflammatory responses. Rats pretreated with noradrenaline and serotonin reuptake inhibitors were given unilateral striatal 6-OHDA injections and evaluated for mechanical hyperalgesia and motor impairments. Through immunohistochemistry, the number and activation of neurons, and the staining for astrocytes, microglia and enkephalin were evaluated in specific brain structures and the dorsal horn of the spinal cord. The PD model induced bilateral mechanical hyperalgesia that was prevented by reuptake inhibitors in the paw contralateral to the lesion. Reuptake inhibitors also prevented postural immobility and asymmetric rotational behavior in PD rats without interfering with dopaminergic neuron loss or glial activation in the substantia nigra. However, the inhibitors changed the periaqueductal gray circuitry, protected against neuronal impairment in the locus coeruleus and nucleus raphe magnus, and normalized spinal enkephalin and glial staining in lesioned rats. These data indicate that the preservation of noradrenergic and serotonergic systems regulates motor responses and nociceptive circuitry during PD not by interfering directly with nigral lesions but by modulating the opioid system and glial response in the spinal cord. Taken together, these results suggest that nondopaminergic circuitry is essential to the motor and nonmotor symptoms of PD and must be further investigated.


Assuntos
Vias Neurais/metabolismo , Norepinefrina/metabolismo , Dor/metabolismo , Doença de Parkinson/metabolismo , Serotonina/metabolismo , Animais , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Vias Neurais/patologia , Dor/etiologia , Dor/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Ratos
15.
Behav Brain Funct ; 15(1): 5, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909927

RESUMO

Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.


Assuntos
Analgésicos/farmacologia , Córtex Motor/fisiologia , Limiar da Dor/efeitos dos fármacos , Dor/fisiopatologia , Animais , Hiperalgesia/metabolismo , Masculino , Neuralgia/terapia , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Coluna Vertebral/efeitos dos fármacos
16.
Pathol Res Pract ; 214(6): 907-913, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29559247

RESUMO

Ameloblastoma is a locally aggressive neoplasm with a poorly understood pathogenesis. Therefore, the aim of this study is to investigate whether COX-2 expression is associated with ameloblastoma microvascular density (MVD) and with tumor aggressiveness. Sixty-three cases of primary ameloblastomas arranged in tissue microarray were submitted to immunohistochemistry against cyclooxigenase-2 (COX-2) and CD34. Clinicopathological parameters regarding sex, age, tumour size, tumour duration, tumour location, treatment, recurrences, radiographic features, vestibular/lingual and basal cortical disruption and follow-up data were obtained from patients' medical records and correlated with the proteins expression. The results on BRAF-V600E expression were obtained from our previous study and correlated with COX-2 and CD34 expressions. Log-rank univariate analysis and multivariate Cox regression model were done to investigate the prognostic potential of the molecular markers. Twenty-eight cases (44.4%) exhibited cytoplasmic positivity for COX-2, predominantly in the columnar peripheral cells, with a mean MVD of 2.2 vessels/mm2. COX-2 was significantly associated with recurrences (p < 0.001) and BRAF-V600E expression (p < 0.001), whereas lower MVD was associated with the use of conservative therapy (p = 0.004). Using univariate and multivariate analyses, COX-2 was significantly associated with a lower 5-year disease-free survival (DFS) rate (p < 0.001 and p = 0.012, respectively), but not with a higher MVD (p = 0.68). In conclusion, COX-2 expression in ameloblastomas is not associated with MVD, but it is significantly associated with recurrences and with a lower DFS.


Assuntos
Ameloblastoma/patologia , Biomarcadores Tumorais/análise , Ciclo-Oxigenase 1/biossíntese , Neoplasias Maxilomandibulares/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ameloblastoma/mortalidade , Criança , Ciclo-Oxigenase 1/análise , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Maxilomandibulares/mortalidade , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Adulto Jovem
17.
PLoS One ; 11(4): e0153506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27071073

RESUMO

Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.


Assuntos
Nociceptividade , Substância Cinzenta Periaquedutal/fisiopatologia , Estimulação Transcraniana por Corrente Contínua , Animais , Eletrodos , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Masculino , Substância Cinzenta Periaquedutal/patologia , Células do Corno Posterior/patologia , Ratos , Ratos Wistar
18.
Amino Acids ; 48(3): 821-831, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592499

RESUMO

Gliomas are the most common type among all central nervous system tumors. The aggressiveness of gliomas is correlated with the level of angiogenesis and is often associated with prognosis. The aim of this study is to evaluate the novel GX1 peptide and the heterodimer RGD-GX1 radiolabeled with technetium-99m, for angiogenesis detection in glioma models. Radiolabeling and radiochemical controls were assessed for both radioconjugates. In vitro binding studies in glioma tumor cells were performed, as well as biodistribution in SCID mice bearing tumor cells, in order to evaluate the biological behavior and tumor uptake of the radiocomplexes. Blocking and imaging studies were also conducted. MicroSPECT/CT images were acquired in animals with experimentally implanted intracranial tumor. Open field activity was performed to evaluate behavior, as well as perfusion and histology analysis. The radiochemical purity of both radiotracers was greater than 96 %. In vitro binding studies revealed rather similar binding profi le for each molecule. The highest binding was for RGD-GX1 peptide at 120 min in U87MG cells (1.14 ± 0.35 %). Tumor uptake was also favorable for RGD-GX1 peptide in U87MG cells, reaching 2.96 ± 0.70 % at 1 h p.i. with 47 % of blocking. Imaging studies also indicated better visualization for RGD-GX1 peptide in U87MG cells. Behavior evaluation pointed brain damage and histology studies confirmed actual tumor in the uptake site. The results with the angiogenesis seeking molecule (99m)Tc-HYNIC-E-[c(RGDfk)-c(GX1)] were successful, and better than with (99m)Tc-HYNIC-PEG4-c(GX1). Future studies targeting angiogenesis in other glioma and nonglioma tumor models are recommended.


Assuntos
Glioma/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Oligopeptídeos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/diagnóstico , Glioma/metabolismo , Humanos , Camundongos , Camundongos SCID , Neovascularização Patológica/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Tecnécio/administração & dosagem , Tecnécio/química , Tecnécio/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único
19.
Mediators Inflamm ; 2014: 836491, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276056

RESUMO

The protein S100A9 plays a key role in the control of inflammatory response. The C-terminus of the murine S100A9 protein (mS100A9p) downregulates the spreading and phagocytic activity of adherent peritoneal cells. Murine peritoneal cells are constituted by macrophages and B-1 cells, and the latter exert an inhibitory effect on macrophage functions by secreting interleukin- (IL-) 10. Here, we investigated the influence of B-1 cells on the inhibitory effect evoked by mS100A9p on macrophages. mS100A9p did not alter spreading and phagocytosis either by peritoneal macrophages obtained from mice deprived of B-1 cells or by bone marrow-derived macrophages (BMDMϕ). Nevertheless, when BMDMϕ were cocultivated by direct or indirect contact with B-1 cells treated with mS100A9p, the phagocytosis by BMDMϕ was decreased, showing that the effect of mS100A9p on macrophages was modulated by B-1 cells and/or their secretory compounds. Furthermore, the inhibitory action of mS100A9p on phagocytosis by adherent peritoneal cells was abolished in cells obtained from IL-10 knockout mice. Taken together, the results show that mS100A9p has no direct inhibitory effect on macrophages; however, mS100A9p modulates B-1 cells, which in turn downregulates macrophages, at least in part, via IL-10. These data contribute to the characterization of S100A9 functions involving B-1 cells in the regulation of the inflammatory process.


Assuntos
Calgranulina B/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Peptídeos/farmacologia , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular , Células Cultivadas , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Fagocitose/efeitos dos fármacos
20.
Rev Neurosci ; 22(4): 471-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21819264

RESUMO

Recent therapeutic human studies testing transcranial direct current stimulation (tDCS) has shown promising results, although many questions remain unanswered. Translational research with experimental animals is an appropriate framework for investigating its mechanisms of action that are still undetermined. Nevertheless, animal and human studies are often discordant. Our aim was to review tDCS animal studies, examining and comparing their main findings with human studies. We performed a systematic review in Medline and other databases, screening for animal studies in vivo that delivered tDCS. Studies in vitro and using other neuromodulatory techniques were excluded. We extracted data according to Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines for reporting in vivo animal research. Thus, we collected data on sample characteristics (size, gender, weight and specimen) and methodology (experimental procedures, experimental animals, housing and husbandry, as well as analysis). We also collected data on methods for delivering tDCS (location, size, current and current density of electrodes and electrode montage), experimental effects (polarity-, intensity- and after-effects) and safety. Only 12 of 48 potentially eligible studies met our inclusion criteria and were reviewed. Quality assessment reporting was only moderate and studies were heterogeneous regarding tDCS montage methodology, position of active and reference electrodes, and current density used. Nonetheless, almost all studies demonstrated that tDCS had positive immediate and long-lasting effects. Vis-à-vis human trials, animal studies applied higher current densities (34.2 vs. 0.4 A/m(2), respectively), preferred extra-cephalic positions for reference electrodes (60% vs. 10%, respectively) and used electrodes with different sizes more often. Potential implications for translational tDCS research are discussed.


Assuntos
Encefalopatias/terapia , Estimulação Magnética Transcraniana/métodos , Pesquisa Translacional Biomédica , Animais , Encéfalo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA